# NASA/SPORT & NWS WFO Coordination Call

Kevin Fuell Geoffrey Stano Kris White

24 May, 2012





## Agenda

- UAH Convective Initiation: Product Change, Training Supplement, Ingest/Display, Evaluation in June/July
- RGB Imagery: usage and evaluation (as events warrant, NWS chat)
- Discussion: Using Total Lightning to anticipate first CG for safety issues (TAF, public events,...)
- Change to SST grid: Impact to WRF-EMS users and display in D2d
- Individual discussions upcoming to review WFO interests and possible subgroups for all.





### **UAH Convective Initiation**

- Product Change
  - User feedback from previous year has influenced next version of product

From Yes/No indicator to a Strength of Signal





### **UAH Convective Initiation**

#### Training Supplement

 Core of product remains the same (i.e. teletraining from last year still valid), and UAH has provided a PPT to supplement the existing training

#### Changes

- No more thresholds for satellite indicators; instead uses a statistical comparison to a database of CI and non-CI events
- Algorithm
- Not truly probabilistic b/c based nearly exclusively on satellite data with no environmental considerations (i.e. shear, cap, etc.)







## **UAHCI Comparison: Old vs New**

#### **Previous Version of SATCAST**



#### **Newest Version of SATCAST**





Transitioning Unique NASA Data a

### **UAH Convective Initiation**

- Ingest/Display
  - Filename is the same so ingest should not change
  - Instructions for AWIPS I display changes to be sent post-call
  - GRIB2 file in use at HWT for AWIPS II display
- Evaluation in June/July
  - Product being evaluated at HWT again (users like the change)
  - HUN, MLB, MFL to evaluation this season. Others to join??? E. Region?
  - User input is going to ultimately determine fate of CI products
  - Would like to discuss evaluation feedback at next call







# WFO RGB Application Examples

1819 Z in ceiling at Farmington. LOW Clouds Dust RGB imagery 1819Z **Applications:** SOO (Mike Buchanan) Awareness of visibility a hazards to aviation for <sup>1</sup> visibility, but IFR ceilings Notification to State ago health statements and visibility Communication to Dep Transportation for moto

Provide information to 1

facilities.

2000 Z

ABQ forecaster noticed odd change

Looked at visible imagery and then

CRP forecaster noted this fog case to

- •Obs show low clouds (aqua) to have VFR
- Obs with fog (grayish) have IFR ceiling
- Would like to compare to official PG product. Does it add value? Is there benefit in data void areas?

#### SPoRT Chat Room: nasa\_sport























# Training: RGB Quick Guides

- RGB Quick Guides –
  2-3 page document
  - Page of text and page with example
  - O Why is RGB important?
  - What to specifically look for in the imagery
  - O What are the caveats?
- Reference EUMETrain and COMET materials
- EUMETSAT RGB Workshop: September 2012
- Future: Collaborate to capture cases for library of examples





This guide provides a highlight of the Air Mass RGB product as quick reference. Operational applications of RGB imagery can be seen on SPoRT's blog site (<a href="https://nasasport.wordpress.com/">https://nasasport.wordpress.com/</a>). A primer of the RGB imagery concept can be found at the UCAR/COMET MetEd website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). More in depth information can be found at EUMETRAIN's website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). More in depth information can be found at EUMETRAIN's website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). More in depth information can be found at EUMETRAIN's website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). More in depth information can be found at EUMETRAIN's website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). More in depth information can be found at EUMETRAIN's website (<a href="https://www.meted.ucar.edu">https://www.meted.ucar.edu</a>). The example of the



# **RGB** Imagery Transition

- About 6 SR WFOs have made it available. Would like more participation as VIIRS will provide more opportunities to view RGBs (plugins for AWIPS II will be available)
- Would like to compare RGBs to single channel and derived products to compare value
- Intensive evaluation for a future date
- Presently, NWS Chat room for SPoRT is monitored and can be used to ask questions about RGBs or see messages from SPoRT as events warrant.





### A Lightning Safety Project

- First flash typically intra-cloud
- NLDN will not observe this first flash
- Average lead time ~ 5 minutes
- Cloud-to-ground initiates some storms
- Lead time can exceed 60 minutes
- High IC flash rates tend to delay first CG
  - Related to very strong updrafts
  - Ordinary convection has less lead









### Regional Initial Flash Type Differences

Results from MacGorman et al. (2011), Florida: Data from Stano et al. (2010) (Data from NLDN and ground-based lightning mapping arrays)

Based on first cloud-to-ground after first total lightning observation

|                                           | Oklahoma | North Texas | High Plains | Central Florida* |
|-------------------------------------------|----------|-------------|-------------|------------------|
| % of storms with CG in first minute       | 20       | 12          | 0           | 14               |
| Time to 50 <sup>th</sup> percentile (min) | 6        | 8           | 31          | 4.5              |
| Time to 75 <sup>th</sup> percentile (min) | 15       | 23          | 44          | 11               |
| % of storms with CG in 60 min             | 88       | 89          | 80          | 83               |

Previous studies found that CGs are a smaller fraction of all lightning on High Plains

\* Central Florida data from unrelated study (Stano et al. 2010)





### The Central Florida Example

#### "First Strike" Forecasting

- 90% of lightning intracloud
- Lead time for initial cloud-to-ground strike
- First IC typically precedes first CG by 5-10 min

#### First IC to First CG Delay – 116 Storms



Time (min)





### **Proposed Assessment**

- Focus on total lightning lead time over first cloud-to-ground strikes
- Possibly narrow focus
  - o TAFs
  - Airport Weather Warnings
- Look at regional differences?
  - North Alabama
  - Kennedy Space Center
  - Houston (when available)
  - Albuquerque (when available)







### Continuing the Collaboration

#### Earlier recommendations

- Calls every other month
- More subject focused
- Group WFOs by projects

#### **SPoRT Actions**

- Contact partners personally
- Discuss projects important to office
- Help focus AWIPS II efforts
- Follow-up on next call







#### **Announcements**



#### 2012 NWA Conference

- Abstracts for posters
  2012 Virtual Workshop
- 2011 was a success
- Late summer / early fall
- SPoRT developing overall theme





# SST Product Change: June 8

- Product Change:
  - 1 Large domain (Pacific, Atlantic, AK, Great Lakes)
  - 2x/day vs 4x/day
  - 2 km resolution vs 1 km
- Announcement went out several weeks ago via WRF users group for configuration change
  - Will make document of WRF changes available post-call
- SPoRT to also provide new .sup file for localization in AWIPS I





